3,874 research outputs found

    The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries

    Get PDF
    The compression of carbon felt electrodes for redox flow batteries leads to changes in the electrochemical performance and has a large effect on the pressure drop of electrolyte flow through the system. In this investigation, the authors have characterised the electrochemical performance of all-vanadium redox flow batteries by studying the effect of compression on the contact resistance, polarisation behaviour and efficiency. Contact resistance was seen to reduce from ca. 2.0 Ω cm2 to 1.2 Ω cm2 and an energy efficiency of 85% was obtained from a felt compressed to 75%. Moreover, X-ray computed tomography (CT) has been employed to study the microstructure of felt electrodes at compressions up to 70%, showing a linear decrease in porosity and a constant fibre surface area-to-volume ratio. The pressure drop was modelled using computational fluid dynamics and employing the 3D structure of the felts obtained from CT, revealing that a 60% increase in compression related to a 44.5% increase in pressure drop

    Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging

    Get PDF
    Thermal gradients can arise within solid oxide fuel cells (SOFCs) due to start-up and shut-down, non-uniform gas distribution, fast cycling and operation under internal reforming conditions. Here, the effects of operationally relevant thermal gradients on Ni/YSZ SOFC anode half cells are investigated using combined synchrotron X-ray diffraction and thermal imaging. The combination of these techniques has identified significant deviation from linear thermal expansion behaviour in a sample exposed to a one dimensional thermal gradient. Stress gradients are identified along isothermal regions due to the presence of a proximate thermal gradient, with tensile stress deviations of up to 75Â MPa being observed across the sample at a constant temperature. Significant strain is also observed due to the presence of thermal gradients when compared to work carried out at isothermal conditions

    Modelling the viral dynamics of the SARS-CoV-2 Delta and Omicron variants in different cell types.

    Get PDF
    We use viral kinetic models fitted to viral load data from in vitro studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells. In nasal cells, Omicron alone can enter via a TMPRSS2-independent pathway, but it is primarily increased efficiency of TMPRSS2-dependent entry which accounts for Omicron's increased activity. This work paves the way for using within-host mathematical models to understand the transmission potential and severity of future variants

    Design of Experiments Methodology to Build a Multifactorial Statistical Model Describing the Metabolic Interactions of Alcohol Dehydrogenase Isozymes in the Ethanol Biosynthetic Pathway of the Yeast Saccharomyces cerevisiae

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this recordMultifactorial approaches can quickly and efficiently model complex, interacting natural or engineered biological systems in a way that traditional one-factor-at-a-time experimentation can fail to do. We applied a Design of Experiments (DOE) approach to model ethanol biosynthesis in yeast, which is well-understood and genetically tractable, yet complex. Six alcohol dehydrogenase (ADH) isozymes catalyze ethanol synthesis, differing in their transcriptional and post-translational regulation, subcellular localization, and enzyme kinetics. We generated a combinatorial library of all ADH gene deletions and measured the impact of gene deletion(s) and environmental context on ethanol production of a subset of this library. The data were used to build a statistical model that described known behaviors of ADH isozymes and identified novel interactions. Importantly, the model described features of ADH metabolic behavior without explicit a priori knowledge. The method is therefore highly suited to understanding and optimizing metabolic pathways in less well-understood systems.We wish to thank Dr. Alex Johns for helpful discussions. S.R.B. would also like to thank Shell Biodomain for funding for this PhD research project

    Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    Get PDF
    Flow batteries represent a possible grid-scale energy storage solution, having many advantages such as scalability, separation of power and energy capabilities, and simple operation. However, they can suffer from degradation during operation and the characteristics of the felt electrodes are little understood in terms of wetting, compression and pressure drops. Presented here is the design of a miniature flow cell that allows the use of x-ray computed tomography (CT) to study carbon felt materials in situ and operando, in both lab-based and synchrotron CT. Through application of the bespoke cell it is possible to observe felt fibres, electrolyte and pore phases and therefore enables non-destructive characterisation of an array of microstructural parameters during the operation of flow batteries. Furthermore, we expect this design can be readily adapted to the study of other electrochemical systems

    Measurement of water uptake in thin-film Nafion and anion alkaline exchange membranes using the quartz crystal microbalance

    Get PDF
    Water uptake, sorption mechanics and swelling characteristics of thin-film Nafion and a commercially available Tokuyama alkaline anion exchange membrane ionomer from the vapour phase is explored using a quartz crystal microbalance (QCM). The water uptake measures the number of water molecules adsorbed by the ionomer per functional group and is determined in-situ using the QCM frequency responses allowing for comparison with nanogram precision. Crystal admittance spectroscopy, along with equivalent circuit fitting, is applied to both thin films for the first time and is used to investigate the ionomer's viscoelastic changes during hydration; to elucidate the mechanisms at play during low, medium and high relative humidities

    Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    Get PDF
    Magnetite (​Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of ​Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale ​Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within ​Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information

    Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS

    Get PDF
    A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary

    Comparing behavior under risk and under ambiguity in a lifecycle experiment

    Get PDF
    Experiments on intertemporal consumption typically show that people have difficulties in optimally solving such problems. Previous studies have focused on contexts in which agents are faced with risky future incomes and have to plan over long horizons. We present an experiment comparing decision making under certainty, risk, and ambiguity, over a shorter lifecycle. Results show that behavior in the ambiguity treatment is markedly different than in the risk condition and it is characterized by a significant pattern of under-consumption
    • …
    corecore